Stochastic Gradients for Large-Scale Tensor Decomposition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of large-scale stochastic optimal control problems

In this paper, we present an Uzawa-based heuristic that is adapted to some type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into small-scale independent subsystems, though linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/portfolio management where subsystems are, ...

متن کامل

Price Decomposition in Large-scale Stochastic Optimal Control

We are interested in optimally driving a dynamical system that can be influenced by exogenous noises. This is generally called a Stochastic Optimal Control (SOC) problem and the Dynamic Programming (DP) principle is the natural way of solving it. Unfortunately, DP faces the so-called curse of dimensionality: the complexity of solving DP equations grows exponentially with the dimension of the in...

متن کامل

Tensor Decompositions for Very Large Scale Problems

Modern applications such as neuroscience, text mining, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionality. Tensors (i.e., multi-way arrays) provide a natural representation for such massive data. Consequently, tensor decompositions and factorizations are emerging as novel and promising tools for exploratory analysis of multidimensional...

متن کامل

A Parallel PARAFAC Implementation & Scalability Testing for Large-Scale Dense Tensor Decomposition

Parallel Factor Analysis (PARAFAC) is used in many scientific disciplines to decompose multidimensional datasets into principal factors in order to uncover relationships in the data. While quite popular, the common implementations of PARAFAC are single server solutions that do not scale well to very large datasets. To address this limitation, a Parallel PARAFAC algorithm has been designed and i...

متن کامل

Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition

We analyze stochastic gradient descent for optimizing non-convex functions. In many cases for non-convex functions the goal is to find a reasonable local minimum, and the main concern is that gradient updates are trapped in saddle points. In this paper we identify strict saddle property for non-convex problem that allows for efficient optimization. Using this property we show that from an arbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematics of Data Science

سال: 2020

ISSN: 2577-0187

DOI: 10.1137/19m1266265