Stochastic Gradients for Large-Scale Tensor Decomposition
نویسندگان
چکیده
منابع مشابه
Decomposition of large-scale stochastic optimal control problems
In this paper, we present an Uzawa-based heuristic that is adapted to some type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into small-scale independent subsystems, though linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/portfolio management where subsystems are, ...
متن کاملPrice Decomposition in Large-scale Stochastic Optimal Control
We are interested in optimally driving a dynamical system that can be influenced by exogenous noises. This is generally called a Stochastic Optimal Control (SOC) problem and the Dynamic Programming (DP) principle is the natural way of solving it. Unfortunately, DP faces the so-called curse of dimensionality: the complexity of solving DP equations grows exponentially with the dimension of the in...
متن کاملTensor Decompositions for Very Large Scale Problems
Modern applications such as neuroscience, text mining, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionality. Tensors (i.e., multi-way arrays) provide a natural representation for such massive data. Consequently, tensor decompositions and factorizations are emerging as novel and promising tools for exploratory analysis of multidimensional...
متن کاملA Parallel PARAFAC Implementation & Scalability Testing for Large-Scale Dense Tensor Decomposition
Parallel Factor Analysis (PARAFAC) is used in many scientific disciplines to decompose multidimensional datasets into principal factors in order to uncover relationships in the data. While quite popular, the common implementations of PARAFAC are single server solutions that do not scale well to very large datasets. To address this limitation, a Parallel PARAFAC algorithm has been designed and i...
متن کاملEscaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition
We analyze stochastic gradient descent for optimizing non-convex functions. In many cases for non-convex functions the goal is to find a reasonable local minimum, and the main concern is that gradient updates are trapped in saddle points. In this paper we identify strict saddle property for non-convex problem that allows for efficient optimization. Using this property we show that from an arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematics of Data Science
سال: 2020
ISSN: 2577-0187
DOI: 10.1137/19m1266265